

GEISEL

MEDICINE

AT DARTMOUTH

ABSTRACT

Introduction: Next-generation sequencing (NGS) has become a critical technology in guiding patient treatment in clinical oncology. As laboratories are increasingly challenged to reduce testing time while managing increased sample volumes, there is a high demand for targeted panels that offer rapid library preparation and the ability to highly multiplex patient samples. Here we evaluate the Pillar SLIMamp[™] Lung and Colon Hot Spots Panel and compare the results to the Ion Torrent Cancer Hotspot Panel v2 (CHPv2).

Methods: A total of 15 samples were included in this evaluation: six non-small cell lung carcinoma (NSCLC) and nine colon adenocarcinoma. All samples had DNA concentration higher than 50 ng/µL and high DNA quality (Q129bp/Q41bp: 0.8-0.92) according to the KAPA hgDNA Quantification and QC Kit. Library preparation was performed using 50 ng and 5 ng of gDNA of each sample. A total of 30 samples were normalized using Qubit, pooled and sequenced on the v3 cartridge on the Illumina's MiSeq® system. For data analysis, FASTq files were uploaded to the Pillar, where sequence alignment, annotation, and variant classification were performed. Variant calls within genomic regions covered by both panels were compared.

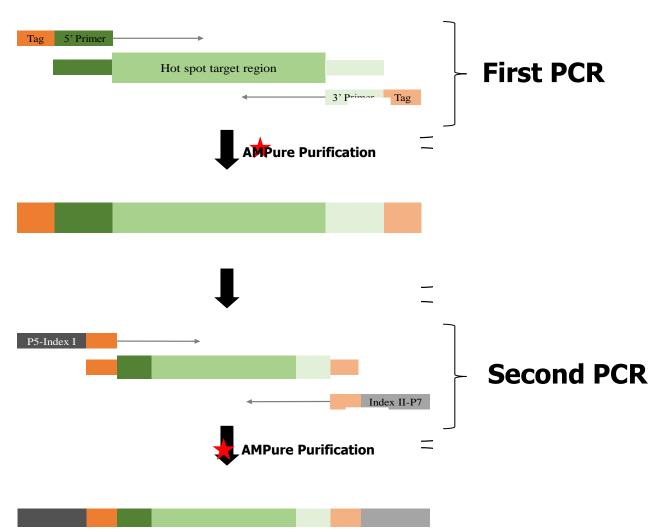
Results: For the 15 FFPE samples, there was a high degree of concordance between the SLIMamp[™] Lung and Colon Hot Spots Panel and CHPv2 variant calls (90.0%, 27/30 variants). Three variants that were called by the Pillar panel were not called using the CHPv2 (two single base-pair deletions and one-point mutation). In addition, variant calls for the Pillar panel were highly reproducible using both 50 ng and 5 ng of input material (100.0% concordance, 30/30 variants). Allelic frequencies for the variants detected in the 50 ng and 5 ng replicates were also highly reproducible (average deviation of 1.5% between replicates).

Conclusions: As NGS tumor profiling becomes an increasingly integral component in determining patient treatment, clinical laboratories will need to accommodate high sample volumes and variable specimen quality. The Pillar SLIMampTM Lung and Colon Hot Spots sequencing panel allows laboratories to perform accurate, highly-multiplexed, targeted NGS using benchtop instruments. In addition, this panel demonstrates a high degree of reproducibility in variant calls using both average and extremely low FFPE DNA inputs.

INTRODUCTION

- \succ Next-generation sequencing (NGS) has become a critical technology in guiding patient treatment in clinical oncology.
- > As laboratories are increasingly challenged to reduce testing time while managing increased sample volumes, there is a high demand for targeted panels that offer rapid library preparation and the ability to highly multiplex patient samples.

Aim. To evaluate the Pillar SLIMampTM Lung and Colon Hot Spots Panel and compare the results to the Ion Torrent Cancer Hotspot Panel v2 (CHPv2).


METHODS

Samples.

- > Internal control: the EGFR ΔE746-A750 50% FFPE Reference Standard used in our routine sequencing runs was included in this study.
- > Clinical: 14 samples previously screened by our laboratory using CHPv2 were selected for this study: five NSCLC (non-small cell lung carcinoma) and nine colon adenocarcinoma.
 - All samples had DNA concentrations greater than 50 ng/µL according to Qubit and good QC Kit.

SLIMampTM Lung and Colon Hot Spots Panel.

- \succ **Sample dilution:** samples were diluted to 10 ng/µL and to 2.5 ng/µL.
- > Library Preparation was performed using 50 ng and 5 ng of each sample.
- > Sequencing: a total of 30 samples were normalized to 4 nM, pooled and sequenced on the MiSeq System.

Figure 1. SLIMamp[™] Lung and Colon Hot Spots Panel chemistry.

Evaluation of the Pillar NGS SLIMampTM Lung and Colon Hot Spots Panel

Jason D. Peterson¹, Francine B. de Abreu¹, Zhaohui Wang², Wendy A. Wells¹, Gregory J. Tsongalis¹

¹Department of Pathology and Laboratory Medicine, DHMC and NCCC, Lebanon, NH and Geisel School of Medicine, Hanover, NH and ² Pillar Biosciences, Natick, MA

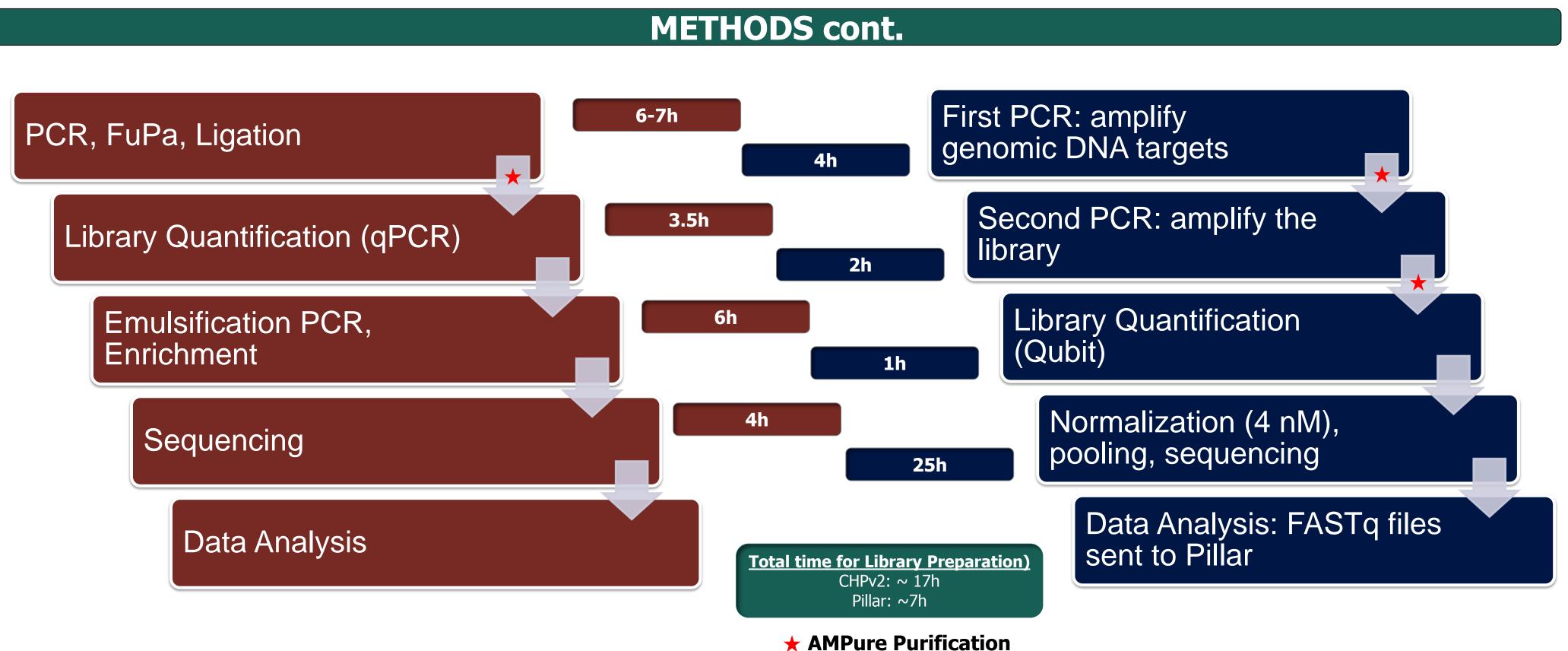

DNA quality (Q129bp/Q41bp: 0.8-0.92) according to the KAPA hgDNA Quantification and

Table 1.	Genes	present in	the Pillar	Panel.

Pillar SLIMamp [™] Lung and Colon Hot					
Spots Panel					
AKT1	ERBB2	KRAS	PTEN		
ALK	ERBB4	MAP2K1	SMAD4		
BRAF	FBXW7	MET	STK11		
CTNNB1	FGFR1	NOTCH1	TP53		
DDR2	FGFR2	NRAS			
EGFR	FGFR3	PIK3CA			
Danel: 22 denes (1.800 hotspots)					

Panel: 22 genes (1,800 hotspots) Input: > 2.5 ng FFPE gDNA (good) quality)

Workflow: 1 day library preparation, 1 day sequencing (MiSeq)

Figure 3. Cancer Hotspot Panel v2 (CHPv2) vs SLIMamp[™] Lung and Colon Hot Spots Panel workflow.

CHPv2 vs Pillar SLIMamp[™] Lung and Colon Hot Spots Panel. 27/30 variants).

RESULTS \succ Total of variant calls: high degree of concordance between both panels' variant calls (90.0%, > **Reproducibility:** high degree of reproducibility using both 5ng and 50ng of FFPE derived input DNA (100.0% concordance, 30/30 variants).

Variant Allele Frequencies > Comparison of Variant Allele Frequencies for 5ng and 50ng sample replicates (Only non-synonymous) mutations).

> Variant frequencies were extremely reproducible using both 5ng and 50ng of FFPE derived input DNA (An average deviation of only 1.5% was observed between the 50ng and 5ng replicates).

Variant Quality Scores

> Comparison of Variant Quality Scores for 5ng and 50ng sample replicates (Only non-synonymous) mutations.

> High Degree of reproducibility was also observed in the variant quality scores using both 50ng and 5ng of FFPE derived DNA.

 \succ Variability between replicates was +/- 1.

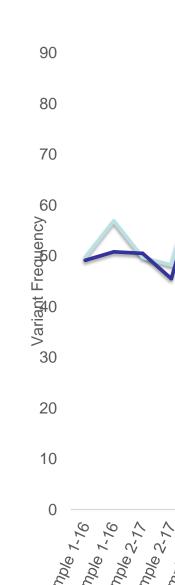
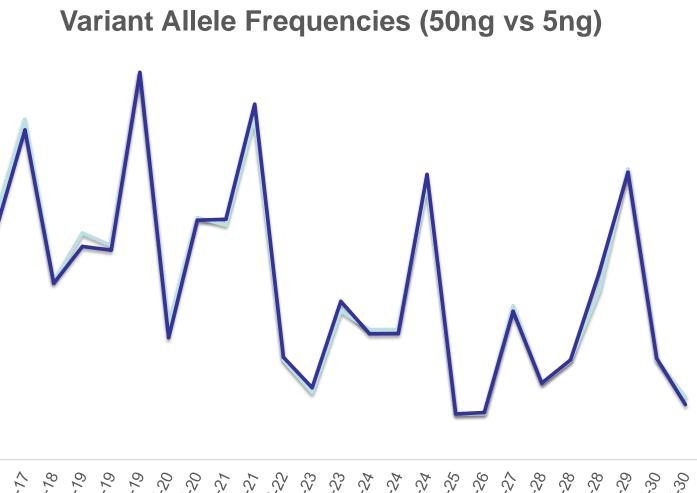



Figure 4. Variant Allele Frequency Comparison (50ng and 5ng DNA Input).

 \diamond The Pillar SLIMampTM Lung and Colon Hot Spots sequencing panel demonstrates a high degree of reproducibility in variant calls using either average or extremely low DNA inputs.

 \diamond The Pillar SLIMampTM Lung and Colon Hot Spots sequencing panel allows laboratories to perform accurate, highly-multiplexed, targeted NGS using benchtop instruments.

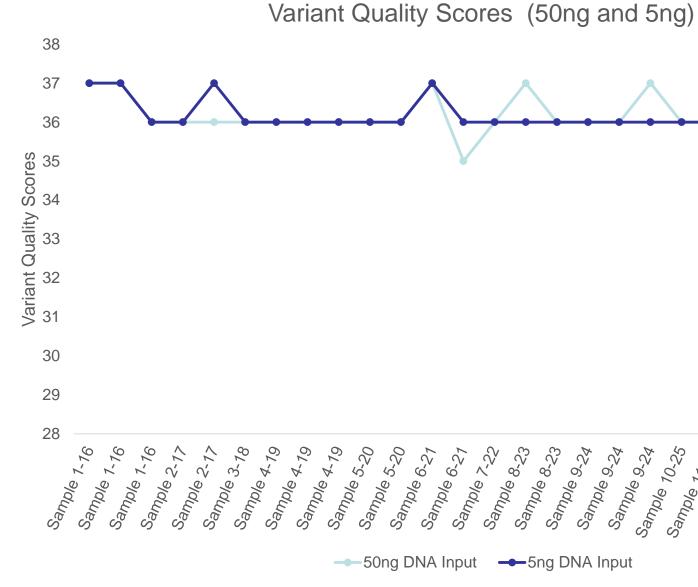


Figure 5. Variant Quality Scores Comparison (50ng and 5ng DNA Input).

CONCLUSIONS

Dartmouth-Hitchcock MEDICAL CENTER

Dartmouth-Hitchcock NORRIS COTTON CANCER CENTER